MIL-STD-1553B BUS CONTROLLER IMPLEMENTATION: A REVIEW

1AMRUTHA V., 2ANU JAMES, 3SREEJESH K. V.

1,2M.Tech student GCE Kannur,
3Adhoc Assistant Professor GCE Kannur
E-mail: 1amruthadotv@gmail.com, 2anujamespaul1992@gmail.com, 3sreejeshkv2001@gmail.com

Abstract—MIL-STD-1553B is a military standard that defines the electrical and protocol characteristics for a data bus. In this paper, a review of the MIL-STD-1553B bus protocol is presented. This paper also proposes the design and implementation of MIL-STD-1553B bus controller.

Index Terms—MIL-STD-1553B, Bus-controller, FPGA.

I. INTRODUCTION

MODERN military avionics system all devices need to communicate as efficiently as possible with a minimum amount of hardware. MIL-STD-1553 is a popular multiplex data bus standard which is originally developed by the US Air force for data integration in their military aircrafts. Since its inception in 1973 it has undergone a number of revisions, first a triservice version (means for Army, Navy and Airforce) is released and after further changes and improvements it has been opened to commercial applications as well. MIL-STD-1553B, which superseded the earlier 1975 specification MIL-STD-1553A, was published in 1978. The basic difference between the 1553A and 1553B revisions is that in the latter, the options are defined rather than being left for the user to define as required. It was found that when the standard did not define an item, there was no coordination in its use. Hardware and software had to be redesigned for each new application. The primary goal of the 1553B was to provide flexibility without creating new designs for each new user. Now it has developed as one of the internationally accepted networking standard and an inevitable component for ship, satellites, missiles, and the international space station program, as well as advanced commercial avionic application. The rest of the paper is organized as follows. In Section II, we present the current state of the art related to the MIL-STD-1553B protocol. In Section III, we describe a method of implementing the protocol which would be followed for implementation of the bus controller. In Section IV we propose the work that is intended as the first author’s M. Tech. project and in Section V we discuss its applications. Finally Section V summarizes this paper with some concluding remarks.

II. CURRENT STATE OF THE ART

A. MIL-STD-1553B

MIL-STD-1553B is a Digital Internal Time Division Command/Response Multiplex Data Bus. And also it is Dual redundant, bidirectional and manchested encoded, which eliminates the use of point-to-point wiring [2]. The standard describes the
method of communication and the electrical interface requirements for subsystems connected to the data bus. The 1 Mbps serial communication bus is used to achieve aircraft avionic and stores management integration. The main characteristics of the standard are listed in Fig. 1. The key elements of the standard are shown in Fig. 2.1) Bus Controller: The bus controller is responsible for directing the flow of data on the data bus. While several terminals may be capable of performing as the bus controller, only one bus controller may be active at a time [1]. The bus controller is the only one allowed to issue commands onto the data bus. The commands may be for the transfer of data or the control and management of the bus (referred to as mode commands).

1. Typically, the bus controller is a function that is contained within some other computer, such as a mission computer, a display processor, or a fire control computer. The complexity of the electronics associated with the bus controller is a function of the subsystem interface (the interface to the computer), the amount of error management and processing to be performed, and the architecture of the bus controller.

2. Remote Terminal: Remote terminals are defined within the standard as All terminals not operating as the bus controller or as a bus monitor. The remote terminal comprises the electronics necessary to transfer data between the data bus and the subsystem. For 1553 applications, the subsystem is the sender or user of the data being transferred.

3. Bus Monitor: A bus monitor is a terminal that listens (monitors) to the exchange of information on the data bus. A monitor may collect all the data from the bus or may collect selected data. The reason for restricting its use is that while a monitor may collect data, it deviates from the command response protocol of the standard, in that a monitor is a passive device that doesn’t transmit a status word and therefore cannot report on the status of the information transferred. Bus monitors fall into two categories:
 - A recorder for testing.
 - A terminal functioning as a back-up bus controller.

B. Word formats

Communication between the subsystems in the bus is achieved by messages. A message is constituted by words.

The protocol has three word formats, namely command, data and status words each 20 bits wide. These are used for the communication on the bus. Fig. 3 shows the three formats.

1. Command word: A command word has 6 fields. The first field is sync it is used to check the validity of the message it can either be 1 or zero. Sync field uses 3 bits for 1 the first one and half bits are high and the next one and half bits are low and for 0 the first section low and next section high [8]. Remote Terminal (RT) Address the next five bits following the sync shall be the RT address. Each RT is assigned a unique address. The next bit following the address shall be the transmit/receive (TIR) bit, which indicate the action required by the RT. A logic zero indicate the RT to receive, and logic one indicate the RT to transmit. The next five bits following the transmit/receive bit is used for either an RT subaddress or mode control, as is dictated by the individual terminal requirements. Following five bit is the quantity of data words to be either sent out or received by the RT. A maximum of 32 data words may be transmitted or received in any one message block. The last bit in the word is used for parity over the preceding sixteen bits. Odd parity is commonly used.

2. Data word: The Data Word (DW) contains the actual information that is being transferred within a message. The first three-bit time contains a data sync. This sync pattern is the opposite of that used for command and status words and therefore is unique to the word type. Data words can be transmitted by either a remote terminal (transit command) or a bus controller (receive command). Transmit and Receive, by convention, references the remote terminal. The next sixteen bits of information are left to the designer to define. The only standard requirement is that the most significant bit (MSB) of the data be transmitted first. The last bit (bit time 20) is the word parity bit. Only odd parity is used.

3. Status word: A remote terminal in response to a valid message transmits only the status word (SW). The status word is used to convey to the bus controller whether a message was properly
received or to convey the state of the remote terminal (i.e., service request, busy, etc.). A status word consist of a sync waveform, RT address, message error bit, instrumentation bit, service request bit, three reserved bits, broadcast command received bit, busy bit, subsystem flag bit, dynamic bus control acceptance bit, terminal flag bit, and a parity bit. For optional broadcast operation, transmission of the status word shall be suppressed.

C. Message formats
The exchange of data is based on message transmissions. The standard defines ten types of message transmission formats. All of these formats are based on the three word types just defined. The message formats have been divided into two groups. These are referred to within the standard as the information transfer formats (Fig. 4) and the broadcast information transfer formats (Fig. 5).

1. Information transfer formats: The information transfer formats are based on the command/response philosophy in that all error free transmissions received by a remote terminal are followed by the transmission of a status word from the terminal to the bus controller. This handshaking principle validates the receipt of the message by the remote terminal.

- Controller to RT Transfer. The Bus Controller sends one 16-bit receive command word, immediately followed by 1 to 32 16-bit data words. The selected Remote Terminal then sends a single 16-bit Status word.
- RT to Controller Transfer. The Bus Controller sends one transmit command word to a Remote Terminal. The Remote Terminal then sends a single Status word, immediately followed by 1 to 32 words.
- RT to RT Transfers. The Bus Controller sends out one receive command word immediately followed by one transmit command word. The Remote Terminal sends a Status word immediately followed by 1 to 32 data words. The receiving Terminal then sends its Status word.
- Mode Command Without Data Word. The Bus Controller sends one command word with a Sub-address of 0 or 31 signifying a Mode Code type command. The Remote Terminal responds with a Status word.
- Mode Command With Data Word (Transmit). The Bus Controller sends one command word with a Sub-address of 0 or 31 signifying a Mode Code type command. The Remote Terminal responds with a Status word immediately followed by a single Data word.
- Mode Command With Data Word (Receive). The Bus Controller sends one command word with a Sub-address of 0 or 31 signifying a Mode Code type command immediately followed by a single data word. The Remote Terminal responds with a Status word.

2. Broadcast transfer formats: Broadcast messages are transmitted to multiple remote terminals at the same time. The terminals suppress the transmission of their status words (not doing so would have multiple boxes trying to talk at the same time and thereby jam the bus). In order for the bus controller to determine if a terminal received the message, a polling sequence to each terminal must be initiated to collect the status words. The broadcast information transfer formats, as shown in figure 5, is identical to the non-broadcast formats described above with the following two exceptions.

![Fig. 4. 1553B Information Transfer Formats](image1)

![Fig. 5. 1553B Information Transfer Formats (Broadcast)](image2)
- The bus controller issues commands to terminal address 31 (11111B) that is reserved for this function.
- The remote terminals receiving the messages (those that implement the broadcast option) suppress the transmission of their status word.

The broadcast option can be used with the message formats where the remote terminal receives data. Obviously, multiple terminals cannot transmit data at the same time, so the RT-BC transfer format and the transmit mode code with data format cannot be used. The broadcast RT-RT allows the bus controller to instruct all remote terminals to receive and then instructs one terminal to transmit, thereby allowing a single subsystem to transfer its data directly to multiple users.

D. Literature review

A few works on MIL-STD-1553B and MIL-STD-1773 are mentioned below: Jorge Rivera et al, presented a paper which provides an overview of the facility capabilities, and a detailed analysis of the results of validation and testing of remote terminals developed for Army and Tri-service programs [6]. Also, the Tri-service program to extend this facility to other data bus programs (e.g. MIL-STD-1773, Linear Token Passing Bus, Parallel Interface (PI) bus, and Test and Maintenance (TM) bus) are described. Bai et al, proposed an FPGA implementation of MIL - STD - 1553B processor[1]. A fully functional implementation of this protocol has been described using Verilog-HDL and implemented on XC-1000 FPCA chips. An Peng proposed a method based on an Intelligent Node System to use Gigabit Ethernet to serve as a 1553B bus data transmission channel[8]. Gigabit Ethernet is built on the Ethernet standard technology. It has the advantages of fast communications and strong adaptability. So it can serve as a 1553B bus data transmission channel. The 1553B bus protocol is introduced and analyzed, including data link layer, physical layer, and functional analysis. High-end FPGA chip is used as the core chip in the system designing. In its internal hardware, there are integrated Gigabit Ethernet physical layer. Gigabit Ethernet and 1553B bus has its own protocol and data frame formats along with the physical interface.

The communication between them was achieved through the bus conversion nodes in the proposed system. Michael Hegarty presented a paper on leveraging MIL-STD-1553’s physical layer for use in aircraft data networks[9]. He presented an overview of the unique benefits of MIL-STD-1553s 1 Mbps physical layer and proposed new solutions based on derivatives of MIL-STD-1553. The derivatives of MIL-STD-1553 include both higher data rates and the use of 1553s physical layer with other protocols. Jemti Jose et al, proposed a method for implementation of the Military data bus standard MIL-STD-1553 onto a Xilinx based FPGA platform[5]. In this method, the protocol controller is modeled as state machine in HDL. In 1992 Ni Yu De et al, presented a paper on ideas and methods about the design and development of a high performance optical data bus based on MIL-STD-1773 [12]. The paper also proposes methods to avoid impulsive interference efficiently. By the use of large core and large numerical aperture fiber optics. He proposes the advantages of using high power LEDs and a low noise optical receiver structure to get high signal-to-noise ratio at decision time.

There are some critical technical problems to be solved before the MIL-STD-1773 data bus is used in aircrafts, e.g., optical modulation, optical source/detector and fibers, network architecture, and optical network components. In 1992 Jian Guo Zhang presented a paper which discusses about the key issues on designing high-reliability optical fiber transmission systems for avionics data buses [11]. And two novel optical modulation techniques are presented, they are Partial Tri level Manchester I1 Bi-phase Coding and Pseudo-four-ary Pulse Width Modulation. The paper also include the selection of optical devices and fibers.

In 1998 Jian Guo Zhang proposed a method for identifying the design issues of highly reliable MIL-STD-1773 optical fiber avionics data buses [13].

III. METHOD OF IMPLEMENTATION

Implementation of bus protocol include the design and implementation of different modules of bus controller [3]. The bus controller (BC) is an interface device linking a MIL-STD-1553 serial data bus to a host microprocessor and/or subsystem. The architecture can be developed based on a Command Block structure and internal, programmable registers. Thus we can make the FPGA work as a bus controller. As defined in MIL-STD-1553, the bus controller initiates all communications on the bus [5]. To meet MIL-STD-1553 bus controller requirements, a Command Block architecture that takes advantage of both internal registers and external memory can be used. Each command word transmitted over the bus must be associated with a Command Block. The Command Block requires eight contiguous memory locations for each message. These eight locations include a control word, two command word locations, a data pointer, two status word locations, a branch address location, and a timer value. The host, or ROM for autonomous operation, must initialize each of the locations associated with each Command Block (the exception is for the two status locations which will be updated as command words are transmitted and corresponding status words are received). Fig. 6 shows the Command Block architecture.

To process messages, the BC uses data supplied in the internal registers along with data stored in
BC accesses eight words stored in external memory called a command block and executes it for each message. Command block is accessed at the beginning and end of command processing.

A. Hardware Implementation

The total design function can be described using VHDL, i.e., the bus controller may be modelled as a state machine in VHDL. The modules can then be implemented on FPGA hardware after verification of the simulation result on ModelSim.

V. APPLICATIONS

Since its inception, MIL-STD-1553 has found numerous applications [10]. The standard has been applied to satellites as well as payloads within the space shuttle (it is even being used on the International Space Station), its military applications are the most numerous and far ranging. It has been employed on large transports, aerial refuelers, and bombers, tactical fighters, and helicopters [11]. It is even contained within missiles and serves, in some instances, as the primary interface between the aircraft and a missile. The Navy has applied the data bus to both surface and subsurface ships. The Army, in addition to its helicopters, has put 1553 into tanks and howitzers. Commercial applications have applied the standard to systems including subways, for example the Bay Area Rapid Transit (BART), and manufacturing production lines. MIL-STD-1553B has also been accepted and implemented by NATO and many foreign governments. The UK has issued Def Stan 00-18 (Part 2) and NATO has published STANAG 3838 AVS, both of which are versions of MIL-STD-1553B. The broad acceptance and application of MIL-STD-1553B has also fostered the development of other standardization efforts. MIL-STD-1773 is a fiber optic version of 1553B. And MIL-STD-1760A, the Aircraft/Store Interconnect, has 1553B embedded within it.

CONCLUSION

We have discussed in detail about the word and message formats of MIL-STD-1553B protocol. The significance and various applications of the protocol were also reviewed. Also, the paper proposes a simplified system for the implementation of the 1553B protocol.

REFERENCES

★★★