
Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

13

MICRO-ARCHETECTURE DESIGN OF RISC V MICROPROCESSOR
USING VHDL

VINAY REDDY NARAYANA

Electronics and Communication Engineering Department, Assistant Professor, PESIT-BSC
E-mail: vinayreddynarayana@gmail.com

Abstract: The freedom of compatibility with old designs and the use of microprocessor technology led to a renaissance in
computer design which emphasized both architectural innovation and efficient use of technology improvements. The paper
proposes a micro-architecture design of a 32 bit RISC V microprocessor, the proposed micro-architecture is meritorious
compared to the earlier versions since the RISC-V processor ISA keeps the source (rs1 and rs2) and destination (rd) registers
at the same position in all formats to simplify decoding, also immediates are packed towards the leftmost available bits in the
instruction and have been allocated to reduce hardware complexity. In particular, the sign bit for all immediates is always in
bit 31 of the instruction to speed sign-extension circuitry. The prominent features which make RISC V better than other ISAs
are RISC-V ISA is very easy to decode and all instructions in it are easy to schedule and do hazard checking.

Optimization is done by pipelining the design in order to improve the processor Clock cycle Per Instruction, however most
of the time there are data dependencies which will increase the CPI. In order to improve the CPI, a data forwarding unit is
incorporated in the execution stage to solve the same. The Instruction set architecture used for the design is the RISC - V
(Version – 2.0000) from the University of Berkeley (UCB). The entire project phase comprises micro-architecture design of
RISC – V ISA (Integer computational and control transfer instructions) processor and the elimination of the structural hazard
and the data hazards. Elimination of the structural hazard is done by designing a separate memory for the instructions and
data. Data hazards are eliminated by the design of the forwarding unit which overcomes the problem of data dependencies.

Keywords: CPI, ISA, RISC V

I. INTRODUCTION

The proposed paper is in the aspect of micro-
architecture design of an RISC V processor with the
prime motive to build a System on Chip suitable for
embedded microprocessor system. One of the major
challenges in any processor design is the reduction of
the CPI (Clock cycle Per Instruction). Hence the
objective serves to have –

 Design of the RISC V processor
 Pipelining of the processor to reduce CPI
 Elimination of the pipeline hazards

The architecture chosen in the project is a RISC
architecture, implementing a processor with a
simplified instruction set design provides several
advantages over implementing a comparable CISC
design:
 Speed. Since a simplified instruction set allows

for a pipelined, superscalar design RISC
processors often achieve 2 to 4 times the
performance of CISC processors using
comparable semiconductor technology and the
same clock rates.

 Simpler hardware. Because the instruction set
of a RISC processor is so simple, it uses up much
less chip space; extra functions, such as memory
management units or floating point arithmetic
units, can also be placed on the same chip.
Smaller chips allow a semiconductor
manufacturer to place more parts on a single

silicon wafer, which can lower the per-chip cost
dramatically.

 Figure 1: Abstract model of the 5 stage RISC V processor

II. INSTRUCTION SET FOR THE RISC V
PROCESSOR DESIGN

The RISC-V ISA is defined as a base integer ISA
which is very similar to that of the early RISC
processors except with no branch delay slots and with
support for optional variable-length instruction
encodings. The base is carefully restricted to a
minimal set of instructions sufficient to provide a
reasonable target for compilers, assemblers, linkers,
and operating systems. Each base integer instruction
set is characterized by the width of the integer
registers and the corresponding size of the user
address space. This project focuses on the base
integer variant - RV32I i.e., 32 bit instruction
registers.

mailto:vinayreddynarayana@gmail.com

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

14

III. PROPOSED ARCHITECTURE

The RISC V processor is a pipelined design which
comprises of five stages, the chapter covers all the
five stages in detail. Finally the overall integrated
module is explained, the five stages of the designed
RISC V processor are

 Fetch stage
 Decode stage
 Register select stage
 Execute stage
 Write back stage

4.1 Fetch Stage Design
Program Counter: The PC is designed using a
simple D FF and the purpose of the PC is to store the
address of the current instruction. The register used

for the PC is a 32 bit register which works on the
rising edge of the clock.
PC adder: This adder is a 32 bit adder which is used
to increment the current address by 4, it is a
combinational design which adds 4 to the current
address and gives it to the PC as the next address of
the instruction.
Instruction Memory: The instruction memory is
designed to hold the instructions of the program, also
referred as the program memory is a ROM memory.
The size of the memory is 232 X 232 bits in size. The
enable signal is made high in order to read the
instruction from the memory.
Address selector: The address selector is a 2:1
multiplexer which is used to select if the next address
would be a branch address or the current address
incremented by 4. The select signal to the multiplexer
comes from the execute module once the branch
address is calculated by the adder present in the
execute unit.

Figure 2: Fetch stage of the RISC V Processor design

4.2 Decode Stage Design

Figure3: Decode stage of the RISC V Processor design

Opcode decoding: The 7 bits of the LSB in an
instruction represent the Opcode field, the decoder
firsts decodes the Opcode to find out the type of
instruction. The 2 LSB bits indicates the base of the
instruction i.e., the base is 32 bit instruction format
hence it is coded as “11” for all the instructions
indicating that it is a 32 bit format.
Function decoding: the function field is decoded next
in order to enable the corresponding module in the

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

15

execute stage to perform the operation. The function
field is 3 bits while in some instructions it is
necessary to check the 7 bit function field once the 3
bit function field is decoded. Also the register read
signal is made high in order to read the operands from
the data memory block.

4.3 Register Select Stage Design

Figure 4: Register select stage of the RISC V Processor design

4.4 Sign extension and Zero padding module

Figure 5: Sign extension/zero padding module of the RISC V

Processor design

The 12 bit immediate offset is sign extended to 32 bit
immediate value using the sign extension logic.
Similarly the 20 bit upper immediate value is
converted to a 32 bit value by padding it with the
zeros to the LSB side of the 20 bit value. The upper
immediate values are usually used in the control flow
type of instructions.
The sign extension/zero padding module is a
combinational module which works in parallel with
the register select module. This module takes the
immediate values once the instruction is being
decoded and converts them to the compatible 32 bit
value which can later be used by the execution unit
for further processing.

4.5 Execute Stage Design
The execute module designed is a distributed type of
design where separate modules are present for each
instruction (similar type uses the same module). An
adder is present for normal 32 bit addition, similarly a
subtractor for subtraction. The logic instructions are
computed using the AND, OR, XOR gates in the
logic block while the shifter is present for the shifting
operations.
A comparator is available in order to compare the two
operands and to say whether the branch has to be
taken or not taken based on the condition. The set less
than instructions are used to set the value of the

destination register as ‘0’ or ‘1’ based on the
comparison of operand values whose logic is
determined by a separate module.

Figure 6: Execute stage of the RISC V Processor design

An adder is constructed in order to compute the
AUIPC instruction where one input to the adder is the
PC value while another input is the 20 bit upper
immediate value which is zero padded to a 32 bit
value. The added result is then taken and the lower 12
bits are cleared. Similarly a separate adder is used for
the JAL and the JALR instructions, JAL instruction
adds the sign extended immediate offset to the PC
value to form the target address while the destination
register is stored with the next address of the
program. In the case of JALR instruction the adder
adds the sign extended immediate offset to the PC
value and then sets the LSB of the result to ‘0’ while
the address of the instruction following the pcplus4 is
written into the destination register. The LUI
instruction is used to build a 32 bit constant and store
it into the destination register.
A multiplexer is added at the beginning in order to
select the type of input to the execute module i.e., the
input would be an immediate value or a value fetched
from the registers. Also a multiplexer is needed to
route the result to the output bus of the execute
module.

4.6 Write Back Stage Design

Figure 7: Write back stage of the RISC V Processor design

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

16

4.7 Micro-architecture design of the processor

Figure 8: Micro-architecture design of the RISC V Processor

design

All the stages discussed so far are integrated together
to form the overall design of the processor. All the
five stages fetch stage, decode stage, register select
stage, execute stage and the write back stage are
integrated following which pipelining is performed in
order to reduce the CPI of the processor.

Registers are introduced in between each stage in
order to achieve pipelining in the design. There is a
latency of one clock cycle in the fetch stage for
fetching the instruction while there is a latency of one
clock cycle in the decode stage too. Similarly there is
a latency of one clock cycle in each of the stages of
the design finally contributing to a latency of number
of stages in the design. However there is latency,
initially the processor speeds up as the instructions
are fetched and processed simultaneously in the
following instructions.

Figure 8 shows the top module of the design i.e.,
processor design with the pipeline registers. The
figure depicts the entire architecture without the
addition of the hazard detection cases.

V. RISC V PROCESSOR WITH THE
ELIMINATION OF HAZARDS

The processor designed is a five stage pipelined
system. Pipelining improves the CPI of the machine
but results in the hazards which in our design are
considered and eliminated. The structural hazard is
eliminated by having separate memories for the data
and the instructions. Considering the data hazards,
only the RAW hazards occur in the design since it is
a simple pipeline design and this hazard is eliminated
by incorporating the data forwarding unit in the
execute stage.

Pipeline hazards and the solutions to overcome the
structural and data pipeline hazards are also covered

in this chapter. The next chapter gives the results and
discussion to support the micro-architecture design of
the RISC V processor.

Figure 9: RISC V design with forwarding unit.

VI. RESULTS AND DISCUSSION

The specification for the design is gathered from the
RISC V ISA manual (Version 2.0000) and coded
using the VHDL language. The design need to be
simulated and synthesized once the VHDL coding is
written, the tools used for this purpose are –

 Modelsim (Version – 6.3g) – Simulation
 Xilinx ISE Design Suit (Version 14.2),

Project Navigator – Synthesize

Timing simulation is performed by loading the
following libraries –

 Unisim library
 Simprim library

Once the synthesis is done then post PAR and post
synthesis simulation is performed, the netlist is
collected from the netgen folder and added to the
design in the Modelsim tool. The timing simulation is
performed along with the testbench code, top module
design, libraries and the netlist. Then the golden
waveforms are compared with the resulted
waveforms.

Figure 10: RTL of the fetch module

The fetch stage of the RISC V processor comprises of
four modules - Program counter, PC adder,
Instruction memory and Address selector. Two
latches are introduced in the design to latch the output
of the PC adder and the Program counter
respectively, figure 10 shows the RTL of the fetch
module.

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

17

Figure 11: RTL of the decode module

The decoder is responsible to split the instruction i.e.,
decode to interpret the type of instruction and then
the respective enable signals that has to be enabled
for the processing of the instruction. Figure 11 shows
the RTL of the fetch module, the decoder performs
the decoding as –

 Opcode decoding
 Function decoding

Figure 12: RTL of the register select module

The register select stage is also known as the data
memory, usually comprises of 32 registers each 32 bit
in length. Figure 12 shows the RTL of the register
select module.

Figure 13: RTL of the sign extension/zero padding module

The sign extension/zero padding module is a
combinational module which works in parallel with
the register select module. This module takes the
immediate values once the instruction is being
decoded and converts them to the compatible 32 bit

value which can later be used by the execution unit
for further processing. Figure 13 shows the RTL of
the sign extension/zero padding module.

Figure 14 : RTL of the execute module

The execute module designed is a distributed type of
design where separate modules are present for each
instruction (similar type uses the same module).
The execute stage of the processor is responsible for
all the computations. The ALU designed for the RISC
V processor is a single cycle processor, which later is
made as a combinational one in order to overcome
the data hazards problem encountered due to
instruction dependencies. Figure 14 shows the RTL
of the execute module.

Figure 15: RTL of the write back module

The write back stage design is a register which
collects the result from the execute stage and then
writes it into the destination register. This stage
functions to store the result into the register. Figure
15 shows the RTL of the write back module.

Figure 16: RTL of the RISC V Processor

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

18

All the five stages fetch stage, decode stage, register
select stage, execute stage and the write back stage
are integrated following which pipelining is
performed in order to reduce the CPI of the processor.
Also data forwarding unit is incorporated to
overcome the data hazards. Figure 16 shows the RTL
of the RISC processor top module.

Figure 17: Simulation waveform of RISC processor

To evaluate the performance of the RISC V
processor, the proposed design is compared with the
MIPS processor [3]. The timing summary table
clearly proves that the RISC V processor
performance is better than the MIPS processor
architecture.

Table 1: Device Utilization Summary of MIPS Vs RISC V
processor

Table 2: Performance Summary of MIPS Vs RISC V processor

It clearly tabulates the synthesis report details of the
design. Also it compares the existing MIPS
architecture with the RISC V processor architecture
and proves the RISC V processor architecture to be
efficient compared to the MIPS processor

1.
CONCLUSION

2.
3. The project proposes a micro-architecture design of a

32 bit RISC V microprocessor; the proposed micro-
architecture is meritorious compared to the earlier
versions. The prominent features which make RISC
V better than other ISAs are RISC-V ISA is very easy
to decode and all instructions in it are easy to
schedule and do hazard checking. The entire project
phase comprises micro-architecture design of RISC –
V ISA (Integer computational and control transfer
instructions) processor and the elimination of the
structural hazard and the data hazards. The design
when targeted on FPGA results in a maximum speed
of 137.636 MHz which proves the architecture to be a
better one compared to the MIPS architecture in
terms of performance.

FUTURE WORK

Pipelining, basic way of obtaining faster processor
was inspected throughout this project. Different
solution proposals have been stated for problems
faced while implementing pipelining. It is clear that
the main point causing problems was the
dependencies between instructions. These
dependencies dependences degrades the instruction
throughput and CPI can be greater than one which is
optimal solution and this problem was resolved by
constituting forwarding (bypass) lines between
stages. Structural deficiencies are eliminated by using
separate Instruction and Data Memory.

There are many directions in which the work can be
extended. There can be a research in the future which

Micro-Archetecture Design of Risc V Microprocessor using VHDL

Proceedings of WRFER International Conference, 02nd April, 2017, Bengaluru, India, ISBN: 978-93-86291-639

19

can propose a method to measure the orthogonality of
ISA (Instruction Set Architecture), which is the
primary metric for the effectiveness of pipelining.
Another direction is to inspect the effects of using
longer pipelines, fetching longer instructions from
memory and implementing sequencing and some
handling mechanisms for all those circumstances.
The micro-architecture design can be extended to
build a System on Chip suitable for an embedded
microprocessor system.

REFERENCE

[1] Andrew Waterman, Yunsup Lee, David Patterson, Krste

Asanovic, The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Version 2:0 - 10-4, CS Division, EECS
Department, University of California, Berkeley, January 18,
2014.

[2] Kirat Pal Singh, Shivani Parmar,“Vhdl Implementation of A
Mips-32 Pipeline Processor” International Journal of Applied
Engineering Research, ISSN 0973-4562 Vol. 7 No.11, 2012.

[3] Iro Pantazi – Mytarelli,“ The history and use of pipelining
computer architecture: MIPS pipelining implementation,”
New York Institute of Technology Old Westbury, New York,
11568.

[4] Computer Architecture, A Quantitative Approach, Hennessy
John and Patterson David, 1990, Fourth edition

[5] Mamun Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S.
Sulaiman, “A Single Clock Cycle MIPS RISC Processor
Design using VHDL”,ICSE2002 Proc. 2002, Penang,
Malaysia, pp.199- 203, 2002.

[6] Kui YI, Yue-hua DING, “32-bit RISC CPU Based on MIPS
Instruction Fetch Module Design”, International Joint
Conference on Artificial Intelligence, 2009, pp. 754-760.

[7] Dal Poz, Marco Antonio Simon, Cobo, Jose Edinson Aedo,
Van Noije, Wilhelmus Adrianus Maria, Zuffo,Marcelo
Knorich, “Simple Risc microprocessor core designed for
digital settopbox applications”, Proceedings of the
International Conference on Application Specific Systems,
Architectures and Processors, 2000, p 3544.

[8] Y. Takahashi, K. Konta, K. Takahashi, K. Shouno, M.
Yokoyama, and M. Mizunuma, Carry propagation free
adder/subtracter using adiabatic dynamic CMOS logic circuit
technology., IEICE Trans. Fundamentals. vol. E86-A, no. 6,
pp. 1437.1444, June 2003.

[9] XiangYunZhu, Ding YueHua, “Instruction Decoder Module
Design of 32-bit RISC CPU Based on MIPS”Second
International Conference on Genetic and Evoltionary
Computing,WGEC pp.347-351 Sept.2008

[10] Rupali S. Balpande, Rashmi S. Keote, “Design of FPGA
based Instruction Fetch & Decode Module of 32-bit RISC
(MIPS) Processor”, International Conference on
Communication Systems and Network Technologies,2011.

[11] Mamun Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S.
Sulaiman, “A Single Clock Cycle MIPS RISC Processor
Design using VHDL”, IEEE International Conference on
Semiconductor Electronics, pp.199-203, Dec. 2003

[12] MIPS Technologies, MIPS32™ Architecture for
Programmers Volume I: Introduction to the MIPS32™
Architecture, rev. 2.0, 2003.

[13] Sharda P. Katke, G.P. Jain “Design and Implementation of 5
Stages Pipelined Architecture in 32 Bit RISC Processor”,
International Journal of Emerging Technology and Advanced
Engineering , Vol. 2, Issue No.4, pp. 340-346, April 2012.

[14] Allam Yamin, "Implementation and comparison of
FALCON-A ISA on FPGA platforms", Master's thesis,
Electrical Engineering Department, National University of
Computer and Emerging Sciences, Lahore, Pakistan, 2013.

