
Implementing Cobs ZPE in C#

Proceedings of IRAJ International Conference, 20th October 2013, Chennai, India. ISBN: 978-93-82702-34-4
6

IMPLEMENTING COBS ZPE IN C#

KEERAT SINGH

.Net tool Developer, WIPRO Technologies.

Abstract- “Byte stuffing is a process that transforms a sequence of data bytes that may contain 'illegal' or 'reserved' values
into a potentially longer sequence that contains no occurrences of those values. The extra length of the transformed sequence
is typically referred to as the overhead of the algorithm. Consistent Overhead Byte Stuffing (COBS) is an algorithm for
encoding data bytes that result in efficient, reliable, unambiguous packet framing regardless of packet content, thus making it
easy for receiving applications to recover from malformed packets. Essentially what it does is change all zero bytes into
bytes that indicate the length of the next block till a zero (including the zero itself in the length).” [che99]
This paper researches the COBS algorithm presented by Stuart Cheshire and Mary Baker, Member, IEEE and cites some
examples as to show the encoding as well as decoding using COBS Algorithm Zero Pair Elimination method. In the end a
programming implementation of the COBS algorithm in C# is given in order to decode a COBS encoded data using the ZPE
variant.

Index Terms—COBS, ZPE, Data Byte, Code Byte

I. INTRODUCTION

The function of byte stuffing is to transform data
packets into a form suitable for transmission over a
serial medium like a telephone line. When the
packets are to be sent over a serial medium there has
to be a way to tell where one packet ends and the
next begins, especially after errors, and this is
typically done by using a reserved value to indicate
packet boundaries called Frame Delimiters. Byte
stuffing is a process that converts a sequence of data
bytes that may contain 'reserved' values into a
potentially longer sequence that contains no
occurrences of those reserved values. The extra
length of the transformed sequence is typically
referred to as the overhead.
Consistent Overhead Byte Stuffing (COBS)
algorithm can be used for encoding without being
concerned too much of the data since all the packets
with a length up to 254 bytes have only 1 byte of
overhead and all the packets greater than 254 bytes in
length have 1 byte overhead per 254 bytes. Which
mathematically amounts to (1/254)*100 = 0.393 %.
Rounding it off gives us an approximate figure of
0.4%.
The best thing about COBS algorithm is that is very
less resource intensive as it can be implemented in
any programming language with just a few lines of
code. An example on how to decode a frame in C# is
given at the end.

II. VARIOUS CONSISTENT OVERHEAD BYTE

STUFFING ALGORITHMS

This section begins by describes the format used by
COBS to encode the data and examples to help you
understand the process of encoding and

decoding better. Firstly it describes the basic COBS
algorithm and then it goes on to describe a slightly
different version of COBS algorithm called
COBS/ZPE (Consistent Overhead Byte Stuffing/
Zero Pair Elimination Method). Then it goes on to
show some bar charts comparing the real time
experimental results and performance of both the
versions of the algorithm.

A. COBS Algorithm
COBS algorithm can do a reversible conversion of
data as it eliminates an octet from the data which is of
size 1 byte and has a value of 00 most commonly
since 0 and 1 are the most commonly used digits in
binary transmission; hence the probability of
occurrence of 00 is higher than other pairs.
Performance of COBS is better when it eliminates
more octets to remove it with a single encoded value.
After the elimination the octet can be used as a frame
delimiter without any problems. COBS first reads the
input packet and adds a zero octet called the Phantom
Octet at the end. It is not compulsory to add this octet
in the memory but the program has to consider a zero
octet appended at the end.
Here is an example of what the packet looks like after
appending the Phantom Octet.

Input:

7
2

0
0

4
D

4
C

7
9

0
0

0
0

4
0

0
6

4
F

3
7

0
0

Fig.1. COBS encoded packet with a Phantom Octet

COBS then searches for all the zero octets in the
packet (including the Phantom Octet), and separates
the packet into various frames with each frame
ending with a zero octet (00) and having exactly one
zero octet. The frame may be as small as one byte or
as big as the packet itself.

Implementing Cobs ZPE in C#

Proceedings of IRAJ International Conference, 20th October 2013, Chennai, India. ISBN: 978-93-82702-34-4
7

An Example shows how a packet is separated into
various frames.
Input:

0
0

7
2

2
C

4
C

7
9

0
0

0
0

4
0

0
6

4
F

0
0

Output:

72 2C 4C 79 00
40 06 4F 00

Fig.2. COBS encoded packet input with zero bytes and output
with separated packets.

COBS encodes each frame using one or more
variable length COBS code blocks. Frames which are
less than 254 bytes in length are encoded as a single
COBS code block and the ones which are longer are
encoded using ((n)/254) bytes + 1 COBS code blocks.
Refer to the example given below to have a better
understanding of encoding of frames larger than 254
bytes.

Fig.3. COBS code blocks. Each COBS code block begins with a
single code byte (shown shaded), followed by zero or more data

bytes.

After all the frames have been encoded with COBS
code blocks they can now be joined together into one
single packet and the entire packet does not contain
any zero octet, hence 0x00 can be placed around each
individual frame in a packet as frame delimiters so as
to define the frame boundaries. A COBS code block
consists of a single code byte as defined in Table 1,
followed by zero or more data bytes. The number of
data bytes is determined by the code byte.
The figure below shows some examples of valid
COBS code blocks and the encoded frames with code
bytes.

Fig.4. COBS code blocks and the encoded frames with data
bytes

Code 0x01 means that there is no data byte after the
code byte but just one 00 Zero octet which is actually
the Phantom Octet.
Codes 0x02 to 0xFE mean that each COBS code
block consists of N-1 data bytes followed by a 00

Zero octet which is again the Phantom Octet where N
is the decimal value of the Hexadecimal Code.
Code 0xFF is used to denote the 254 data bytes not
followed by a zero octet.
As it can be seen that these COBS code blocks don’t
add any additional overhead since the frame which is
N+1 data bytes is encoded into a frame of 1+N data
bytes which actually means that the code block had N
data bytes followed by 1 byte zero octet is encoded
into a frame which consists of 1 byte of code byte
followed by N bytes of data.
This method is only valid for frames less than 254
bytes long. For frames longer than 254 bytes the code
byte 0xFF is used to define a frame with 254 bytes of
data and no zero octet in the end but the decoded
frame does contain an implicit zero in the end.

B. How it actually works
The job of the COBS encoder is to translate the raw
packet data into a series of COBS code blocks. The
function of a COBS encoder is to convert the raw
packet data into COBS code blocks. First separating
the packet into different frames each ending with a
trailing zero and then converting into an encoded
packet is a good method to make one understand the
working of the algorithm. But in actual the encoder
directly converts the raw packet into an encoded one
without breaking up into zero ending frames.
Code(Hex) Code(Deci

mal)
Followed

by
Meanin

g
0x00 00 (not

applicable
)

(not
allowed)

0x01 01 no data
bytes

A single
zero
byte

0x02-0xFE
(0xN)

02-254 (N–1)
data bytes

The (N–
1) data
bytes

followe
d by a
single
zero

0xFF 255 254 data
bytes

The 254
data
bytes
not

followe
d by a
zero

Table 1. Code values used by COBS encoder.

The encoder traverses through the first 254 bytes
looking for the first zero octet. If no such octet is
found then a code byte 0xFF is added to the starting
of the frame followed by the 254 bytes of data. If a
zero octet is found then the numbers of bytes before
the octet are counted and the corresponding code byte

Implementing Cobs ZPE in C#

Proceedings of IRAJ International Conference, 20th October 2013, Chennai, India. ISBN: 978-93-82702-34-4
8

is added to the starting of the frame. If the zero octet
is found after N data bytes then the corresponding
code would be N+1 converted into its Hexadecimal
value. The code byte is added to the beginning of the
frame, the data bytes are added after that and the zero
octet is removed. This process takes place until the
end of the packet is reached and a logical zero octet is
appended to the end of the packet. Fig. 5 shows an
example of packet encoding.
Input:

2
2

7
2

2
C

0
0

7
9

4
C

B
D

3
7

2
D

4
4

0
0

Output:

0
4

2
2

7
2

2
C

0
7

7
9

4
C

B
D

3
7

2
D

4
4

Fig.5. COBS encoding showing input with a phantom zero
logically appended and the corresponding zero-free output.

The algorithm can be tweaked to cater to a particular
case of a packet with a length of 254 bytes which
does not need a zero octet to be added at the tail of
the frame.

C. A COBS variant the Zero Pair Elimination Method

In the real world not only zero is common but a pair
of adjacent zeros also occurs very frequently in the
data transmitted across the internet especially in the
headers of small TCP/IP packets. To make full use of
this situation a new variant of the COBS algorithm
was devised in which the maximum length which
could be encoded was reduced and some new code
bytes were introduced with new meanings. All the
code bytes with their meanings can be seen in Table
2. Mostly the new code bytes are incorporated to
represent the adjacent pair of zero octets.
In COBS Zero Pair Elimination method the byte
codes from 0x00 to 0xCF have the same meaning as
the original COBS. Instead of 253 bytes now only
206 bytes can used to represent a sequence of non-
zero data bytes followed by a zero octet. Earlier 0xFF
was used to encode the maximum length of 255 bytes
which is now denoted by 0xD0 and the maximum
length sequence has been reduced to 207 data bytes
without the phantom octet. Code bytes 0xD1 and
0xD2 are unused and reserved for future use. 0xD3 to
0xDF are used to denote a run of N zero octets. N =
Decimal value of the code byte (0xD3–0xDF) – 208.
Code bytes 0xE0–0xFE are used to denote N data
bytes followed by a pair of Zero Octets. N = Decimal
value of the code byte (0xE0–0xFE) – 223.0xFF is
used to generally denote a Frame error.

Code(He
x)

Code(Deci
mal)

Followe
d by

Meaning

0x00 00 (not
applicabl

e)

(not
allowed)

0x01-
0xCF

01-207 (n–1)
data
bytes

The (n–1)
data bytes
followed

by a single
zero

0xD0 208 207 data
bytes

The 207
data bytes

not
followed
by a zero

0xD1 209 Unused (resume
preempted

packet)
0xD2 210 Unused (reserved

for future
use)

0xD3–
0xDF

211-223 Nothing a run of
(n-D0)
zeroes

0xE0–
0xFE

224-254 n-E0 data
bytes

The data
bytes, plus

two
trailing
zeroes

0xFF 255 Unused (PPP
error)

Table 2. Code values used by COBS ZPE encoder.

Input:
2
2

7
2

2
C

0
0

0
0

4
C

B
D

0
0

0
0

4
4

0
0

Output:

E3 22 72 2C E2 4C BD 02 44
Fig.5. COBS ZPE encoding showing input with a phantom zero

logically appended and the corresponding zero-free output.

III. EXPERIMENTAL RESULTS

Fig. 7. Encoding overhead distribution for three-day trace.

Implementing Cobs ZPE in C#

Proceedings of IRAJ International Conference, 20th October 2013, Chennai, India. ISBN: 978-93-82702-34-4
9

Histograms showing, for each amount of overhead
indicated on the horizontal axis, the percentage of
packets that incur that overhead.

This experiment [Che99] is conducted by one of the
colleague of the authors of the paper Consistent
Overhead Byte Stuffing by Stuart Cheshire and Mary
Baker, Member, IEEE. “This trace was collected over
a period of 3 days from home via a portable ISM-
band packet radio attached to the computer. The
trace contains 36,744 IP packets, totaling 10,060,268
bytes of data (including IP headers and higher
layers; not including the link-level header). The MTU
of the wireless interface in this case was 1024 bytes,
giving worst-case COBS overhead for large packets
of five bytes. However, most of the packets captured
were not large; 69% of the packets were shorter than
254 bytes and necessarily incurred exactly one byte
of overhead when encoded with COBS. Moreover,
41% of the packets were exactly 40 bytes long, which
is just the length of a TCP acknowledgement
containing no data. Another 10% of the packets were
exactly 41 bytes long, which is the length of a TCP
packet containing just one data byte. Taking these
two numbers together, this means that over half the
packets were 40 or 41 bytes long. Only 15% of the
packets were maximum-sized 1024-byte packets. The
three-day trace was a particularly challenging test
case with which to evaluate COBS, because it
contains so many small packets.”

IV. CONCLUSIONS

We can successfully conclude from the Fig 7 the
COBS Zero Pair Elimination method has a far better
compression rate as compared to the original COBS
algorithm. Hence I have decided to go ahead and use
the COBS/ZPE method in a program that I made
which decodes the input string which is in encoded
form. The program is written in a console application
using C# language. A source code has been included
after this section as on how the encoding is done
according to my understanding of the COBS ZPE
algorithm. As it was discussed earlier that the COBS
algorithm is easy to implement which has been shown
the core functionality can be achieved in only a few
lines of code.

V. ACKNOWLEDGEMENT

I express my sincere thanks to Stuart Cheshire and
Mary Baker for writing the wonderful paper about the
COBS algorithm and explaining it beautifully.

VI. SOURCE CODE

C# Source Code for the implementation of COBS
ZPE algorithm.

public static void COBSDecoder(string strInput)

{
String[] strFrameDelimitedString ;

/*Using Frame Delimiters to seperate Frame*/
strFrameDelimitedString = strInput.Split(new
string[1] { "00 00" },
StringSplitOptions.RemoveEmptyEntries);
int i = 0;
foreach (string line in strFrameDelimitedString)
{

/*Removing the left over Frame Delimiters*/
strFrameDelimitedString[i] =
(line.Replace("00", "")).Trim();
i++;
}
for(int j = 0; j <

strFrameDelimitedString.Length; j++)
{
OctetsDecoder(strFrameDelimitedString[j]);
}

}

public static void OctetsDecoder(String
strFrameDelimitedString)
{

List<String> lstFrameDelimitedString = new
List<string>();
/*Finding the position to insert 00 Octet or 00 00
Pair Octet*/
int i = 0;
byte bytEncodedOctet;
lstFrameDelimitedString=
strFrameDelimitedString.Split(new string[1]{"
"},
StringSplitOptions.RemoveEmptyEntries).ToList
<string>();

try
{
for (i=0; i<lstFrameDelimitedString.Count; i = i +
bytEncodedOctet)
{

/*Conversion of HexaDecimal to Byte value*/
bytEncodedOctet =
byte.Parse(lstFrameDelimitedString[i],
System.Globalization.NumberStyles.HexNumber)
;

/*Searching for 01-CF (01-207) Octet and adding
00 Octet*/
if
(Enumerable.Range(1,207).Contains((int)bytEnco
dedOctet))
{

if(bytEncodedOctet.Equals((byte)lstFrameDeli
mitedString.Count))
{
lstFrameDelimitedString.RemoveAt(i);
}
else
{

Implementing Cobs ZPE in C#

Proceedings of IRAJ International Conference, 20th October 2013, Chennai, India. ISBN: 978-93-82702-34-4
10

lstFrameDelimitedString.Insert(i +
bytEncodedOctet, "00");
lstFrameDelimitedString.RemoveAt(i);
}

}

/*Searching for E0-FE(224-254) Octet and adding
00 00 Octet Pair */
else if
(Enumerable.Range(224,254).Contains((int)bytEn
codedOctet))
{

lstFrameDelimitedString.Insert(i +
bytEncodedOctet - 223, "00 00");
lstFrameDelimitedString.RemoveAt(i);
i -= 223;

}

/*Searching for D3-DF(211-223) Octet and
adding n 00 Octet pairs */
else if
(Enumerable.Range(211,223).Contains((int)bytEn
codedOctet))
{

for (int j = 0; j < bytEncodedOctet - 208; j++)
{
lstFrameDelimitedString.Insert(i + 1, "00");
}
lstFrameDelimitedString.RemoveAt(i);
i -= 208;

}

/*Searching for 'FF' frame*/
else if (bytEncodedOctet.Equals((byte)255))
{

lstFrameDelimitedString.Clear();
lstFrameDelimitedString.Add("Frame Error");

}
StringBuilder strOutput = new StringBuilder();

/*Removing last 00 Octet also known as Phantom
Octet*/
if
(lstFrameDelimitedString[lstFrameDelimitedStrin
g.Count - 1].Contains("00"))
{

if
(lstFrameDelimitedString[lstFrameDelimitedStr
ing.Count - 1] == "00 00")

{
lstFrameDelimitedString[lstFrameDelimitedStrin
g.Count - 1] = "00";
}
else
{
lstFrameDelimitedString.RemoveAt(lstFrameDel
imitedString.Count - 1);
}
}
foreach (string strOctet in
lstFrameDelimitedString)
{
//Appending each octet with a space " "
Console.Write(strOctet + " ");
}
Console.WriteLine();

}
catch
{
Console.WriteLine("Invalid Frame");
}

}

x

[1] [Che99] Stuart Cheshire and Mary Baker,

“Consistent Overhead Byte Stuffing”, IEEE/ACM
transactions on networking, vol.7, no. 2, April 1999.

[2] [Che98] Stuart Cheshire and Mary Baker, “PPP
Consistent Overhead Byte Stuffing (COBS)”, draft-ietf-
pppext-cobs-00.txt November 1997

