
Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

12

REAL TIME FACE DETECTION AND TRACKING USING HAAR
CLASSIFIER ON SOC

1R N DASCHOUDHARY, 2RAJASHREE TRIPATHY

1Professor, 2Research Scholar, 1,2Department of EIE -Siksha O Anusandhan University

Abstract- In this paper we intend to Implement a real time Face detection and tracking the head poses position’s
from high definition video using Haar Classifier through Raspberry Pi BCM2835 CPU processor which is an
combination of SoC with GPU based Architecture. OVA5647 CMOS Image sensor with 5-megapixel used for
obtaining high definition video H.264 video data via GPU’s hardware video decoder to improve playback of
H.264 Video data supporting from 1080p at 30fps with complete user control over formatting and output data
transfer also supporting with 720p/60HD video in full field of View(FOV). SimpleCV and OpenCV libraries are
used for face detection and tracking the head poses position. The experimental result computed by using computer
vision SimpleCV and OpenCV framework libraries along with above mentioned hardware results in a sustained
throughput of 30 fps under 1080p resolutions for with higher accuracy and speediness for face detection and
tracking the head poses position.

Index Terms- Computer Vision, Face Detection, Haar Classifier, Tracking

I. INTRODUCTION

Face detection from a image has been playing a vital
role in the active research area, especially in computer
vision research for more decades beginning from
Eigen Faces, Principal Component Analysis, for
numerous applications from monitoring, surveillance,
Biometric and Human Computer Interaction. Face
detection proposed by Viola and Jones’s, Face
detection is most used face detection is based on
statistical methods for rapid frontal face detection
system using Haar-like features. Analyzing the pixels
for face detection is time consuming and difficult to
accomplish because of the wide variations of shape
and pigmentation within a human face.

Viola and Jones devised an algorithm, called Haar
Classifiers, to rapidly detect any object, including
human faces, using AdaBoost classifier cascades that
are based on Haar-like features and not pixels. Haar
–Like features widely used for identifying and
locating human face in images regardless of size,
position and condition including color, texture and
motion under dynamic environments and the resources
of the systems are considered to be monopolized by
face detection.

In this paper we intend to implement the
Haar-Classifier for Face detection and tracking based
on the Haar-Features on System on Chip (SoC) for use
in a human machine interface and action
interpretation. Haar-like features can be computed at
any scale or location in constant time using the integral
image representation for images. The problem in
analysis the pose is binary classification, which needs
to be classified in every images and segregate data

belonging to the class of interest (i.e. faces), or not.
Most of the researchers are contributing focused to the
two major main aspects of the problem: Haar-like
feature and Classifier. Haar-Like features are used for
selecting classes of features by improving the
performance of the classifier based on the trained set
of data pertaining to them. Haar Classifier adapts the
existing classification algorithms to the detection and
recognition problems.

II. RELATED WORKS

Robust and real-time face detection place a vital role
in many of the application scenarios like access
control, surveillance scenarios, gaming,
human-computer interaction, etc. Viola and Jones
devised an algorithm, called Haar Classifiers, to
rapidly detect any object, including human faces,
using Haar classifier cascades that are based on Haar
–Like features. Haar-like features and not pixels.
Different types of methods are available for detecting
the face and recognition: Principal Component
Analysis (PCA), Linear Discriminate Analysis
(LDA), Support Vector Machines (SVM) Independent
Component Analysis (ICA), Local Binary Pattern
(LBP), and more recently Sparse Representation (SR)
based methods. A recent survey on face recognition
algorithms can be found in. Different algorithm are
existing for performing and analysis of face detection
with each of its own weakness and strengths related to
use of flesh tones, some use contours, and other are
even more complex involving templates, neural
networks, or filters few of these algorithm are
computationally expensive. There has been little work
in the literature during the last years about real-time
face detection at HDTV resolutions. Face detection

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

13

algorithm using Haar-like features was described by
Viola and Jones [14] and now it and a range of its
modifications are widely spread in many
applications. One of these modifications [15] was
implemented in OpenCV library [16]. The OpenCV
implementation compiled with OpenMP option
provides only 4.5 frames per second on 4-core CPU.
It’s too slow to process HD stream in real time. As a
solution to this problem a parallel modification of
OpenCV algorithm for GPU has been developed.

Some parallel versions of face detection algorithm
using Haar-like features [17, 18, 19]. The algorithm
introduced by Hefenbrock [16] was the first
realization of a face detection algorithm using GPU
we could find.

It showed an effect of using GPU versus CPU. But the
algorithm could not process a stream with resolution
640x480 in real time. The next parallel
implementation is found in Obukhov’s algorithm [20].
It’s a single realization that uses GPU and can work
with OpenCV classifiers without modification that is
why modern versions of OpenCV library include it
(test result of the algorithm is presented. in
corresponding section of the paper). The main problem
of the algorithm is texture memory usage for classifier
storing because texture memory is not as effective for
general operation as cached global memory on modern
GPU.

Section III presents to the face detection mechanism
that uses Haar Classifiers based on Haar-like features.
Section II refers to related works. Section IV presents
the face detection design and analysis with Cascade
Haar Classifier tracking mechanism based on a
Haar-Like features approach. Section V presents the
System overview obtained by implementing the Haar
Classifier on System on Chip (Raspberry Pi). Further
section real time data results are presented where it
can be seen that faces are detected in images from
High Definition video streaming from Image Sensor.
Section VI provides result and Section VII concludes
this article.

III. FACE DETECTION HAAR CLASSIFIER
ALGORITHM

The face detection algorithm proposed by Viola and
Jones is used as the basis of our design. The face
detection algorithm looks for specific Haar features of
a human face. When one of these features is found, the
algorithm allows the face candidate to pass to the next
stage of detection. A face candidate is a rectangular
section of the original image called a sub-window.
Generally these sub-windows have a fixed size
(typically 24×24 pixels). This sub-window is often
scaled in order to obtain a variety of different size
faces. The algorithm scans the entire image with this
window and denotes each respective section a face

candidate [6]. The algorithm uses an integral image in
order to process Haar features of a face candidate in
constant time. It uses a cascade of stages which is used
to eliminate non-face candidates quickly. Each stage
consists of many different Haar features. Each feature
is classified by a Haar feature classifier. The Haar
feature classifiers generate an output which can then
be provided to the stage comparator. The stage
comparator sums the outputs of the Haar feature
classifiers and compares this value with a stage
threshold to determine if the stage should be passed. If
all stages are passed the face candidate is concluded to
be a face. These terms will be discussed in more detail
in the following sections.

A. Integral Image
The integral image is defined as the summation of the
pixel values of the original image. The value at any
location (x, y) of the integral image is the sum of the
image’s pixels above and to the left of location (x, y).
Figure 1 illustrates the integral image generation. The
simple rectangular features of an image are calculated
using an intermediate representation of an image,
called the integral image [1]. The integral image is an
array containing the sums of the pixels’ intensity
values located directly to the left of a pixel and
directly above the pixel at location),(yx inclusive.

So if),(yxA is the original image and],[yxAI is
the integral image then the integral image is computed
as shown in equation 1 and illustrated in Figure 2.

yyxx

yxAyxAI
''' ,

'' ,, (1)

The features rotated by forty-five degrees, like the line
feature shown in Figure 1(b), require another
intermediate representation called the rotated integral
image or rotated sum auxiliary image[1]. The rotated
integral image is calculated by finding the sum of the
pixels’ intensity values that are located at a forty five
degree angle to the left and above for the x value and
below for the y value. So if yxA , is the original

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

14

image and yxAR , is the rotated integral image then
the integral image is computed as shown in equation 2
an illustrated in Figure 2 and Figure 3.

Figure 3. (a) Edge Features (b) Line Features (c) Center

Surround Features

'''' ,

'' ,,
yyxxxx

yxAyxAR (2)

It only takes two passes to compute both integral
image arrays, one for each array. Using the appropriate
integral image and taking the difference between six to
eight array elements forming two or three connected
rectangles, a feature of any scale can be computed.
Thus calculating a feature is extremely fast and
efficient. It also means calculating features of various
sizes requires the same effort as a feature of only two
or three pixels. The detection of various sizes of the
same object requires the same amount of effort and
time as objects of similar sizes since scaling requires
no additional effort.

B. Haar Features
Haar features are composed of either two or three
rectangles. Face candidates are scanned and searched
for Haar features of the current stage. The weight and
size of each feature and the features themselves are
generated using a machine learning algorithm from
AdaBoost. The weights are constants generated by the
learning algorithm. There are a variety of forms of
features as seen below in Figure 4. Each Haar feature
has a value that is calculated by taking the area of each
rectangle, multiplying each by their respective
weights, and then summing the results. The area of
each rectangle is easily found using the integral image.

The coordinate of the any corner of a rectangle can be
used to get the sum of all the pixels above and to the
left of that location using the integral image. By using
each corner of a rectangle, the area can be computed
quickly as denoted by Figure 5. Since L is subtracted
off twice it must be added back on to get the correct
area of the rectangle. The area of the rectangle R,
denoted as the rectangle integral, can be computed as
follows using the locations of the integral image:

1234 LLLL

C. Haar Feature Classifier
A Haar feature classifier uses the rectangle integral to
calculate the value of a feature. The Haar feature
classifier multiplies the weight of each rectangle by its
area and the results are added together. Several Haar
feature classifiers compose a stage. A stage
comparator sums all the Haar feature classifier results
in a stage and compares this summation with a stage
threshold. The threshold is also a constant obtained
from the AdaBoost algorithm. Each stage does not
have a set number of Haar features. Depending on the
parameters of the training data individual stages can
have a varying number of Haar features as shown in
the Figure 6. For example, Viola and Jones’ data set
used 2 features in the first stage and 10 in the second.
All together they used a total of 38 stages and 6060
features. Our data set is based on the OpenCV data set
which used 22 stages and 2135 features in total.

Figure 6. Calculating the area of rectangular

1234 LLLL
D. Cascade

The Viola and Jones face detection algorithm
eliminates face candidates quickly using a cascade of
stages. The cascade eliminates candidates by making
stricter requirements in each stage with later stages
being much more difficult for a candidate to pass.
Candidates exit the cascade if they pass all stages or
fail any stage. A face is detected if a candidate passes
all stages. This process is shown in Figure 7.

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

15

Figure 7. Cascaded of stages.Must pass all the stages to detect

Face

IV. FACE DETECTION DESIGN AND
 ANALYSIS

This section will describe about the Face detection
with itself which has several modules that are working
together as one to make the system runs smoothly. The
phase consists of capture image; Detect faces in the
image, feature extraction, template comparison,
declaration of matching template. The acquisition of
face images can be done by acquiring the real time
image from the OVA5647 CMOS Image Sensor
interfaced with Raspberry pi High speed processor
with GPU Processing. Furthermore the acquisition can
also be done through real time remote monitoring
either with IP or Wifi. The function of the face
detection module is clarify whether the face is
available during real time monitoring or detection of
not. The face detection is done by scanning up an
image for different scales and looking for some simple
patterns as mentioned in the above section III. When
the system detects the face, it will produce and
sub-image that is scaled such that the face appears in
the center and presented at a uniform size. OpenCV
already provide algorithm to locate faces in still image
and videos-Algorithm mentioned in section III. Haar
classifier algorithm scans the image and creates a
bounding box as returns for each detected face.

The feature extraction in face detection is done by
localizing of the characteristics of face components
(i.e., eyes, mouth, nose etc) in an image. In other terms
the feature extraction is a step in face recognition
where the system locates certain points on the faces
such as corner and center of the eyes, tip of the nose,
mouth etc. It analyzes spatial geometry of differential
feature of a face. Result of this analyzing is a set of
template generated for each face .The template
consists of a reduced set of data which represent the
real time face detected in bounded box. The template
comparison is done with the template stored in the
database. Two phases are there in this phase
Identification and verification. These two term
identification to detect the face in real time video and
verification application for face recognition which
scope out of this paper. The final phase of face
detection is to declare the highest matching score
resulted in the previous step.

The configuration will determine how the application
should behave based on the desired security and
operational consideration. The face detection
methodology is shown in the Figure 8.

Figure 8. Flowchart of face detection system

A. Face detection

System is capable of detecting the faces from the
captured image for the purpose of prototype. From the
above Section, face detection determines where in an
image a face is located and it is done by scanning the
different image scales and extracting the exact patterns
to detect the face. The Prototype is to built with
Haar-Like Feature function from OpenCV. Haar
classifier detection is used to create a search window
that slide through a image and check whether a certain
region of an image looks likes face or not. Haar like
features and a large set of very weak classifier uses a
single feature to define a certain image as face or non
face. Each feature is described by the template its
coordinate relative to the search window origin and the
size of the feature.

The search window quickly scanning the first
classifier on the cascade as shown in the Figure 9, if
the classifier returns false then the computation on that
window also ends and results no detected
face(false).Moreover, if the classifier returns true, then
the window will be passed down to the next classifier
in the cascade to do the exact same thing. When all
classifier return true for that window, then the result
will returns true also for that certain window face
detected.

Figure 9. Decision tree based on Haar –like features (Cascade

of classifier)

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

16

V. SYSTEM DESIGN

This paper is demonstrate and to utilize the portability
of the Raspberry Pi by developing a security system
using the camera module extension. The security
system should have the capability of capturing a live
video stream, detect any faces in the frame and
recognize the face using a facial recognition
algorithm. Feedback in the form of speech should be
integrated into the security system shown in the below
Figure 10 through remote monitoring for detecting the
face interface with Raspberry Pi and OVA5647
CMOS Image Sensor which has High Definition
Video processing.

Figure 10. Remote monitoring Face Detection System

Raspeberry pi with OVA5647

The image processing tasks should be completed using
the OpenCV library developed by Intel, which is
compatible with the Raspberry Pi board. Figure 11
Shows the real time face detection system.

Figure 11. Real time Face Detection System

VI. RESULTS

The result of face detection is shown in Figure 12.
Those are the frames extracted from the video.
Sometimes, face detection algorithm may get more
than one result even there is only one face in the frame,
such as Figure 12. In this case, the post processing has
been used. If the detector provides more than one
rectangle, which indicates the position of the face, the
distance of center points of these rectangles has been
calculated. If this distance is smaller than a pre-set
threshold, the average of these rectangles will be

computed and set as the final position of the detected
face.

In the paper we implement face tracking in the Python
by using Viola Jones face detection. This method is
verified and the limitations of the scheme are observed
through testing and debugging our codes. And then,
limited by Python performance, we shift to OpenCV to
evaluate the speed of this face tracking scheme, We
found the Viola Jones face detection is more suitable
for real-time face detection since they requires less
CPU resource and costs shorter time.

Figure 12. Face Detected and Tracking

Figure 13. Face Not Detected

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

17

Figure 14. Multiple Face Detection –Haar Classifier Cascade

Table -1 Experiment Result

 Image 1 Image 2 Image3

Face
Detection/Not

Face
Detected

Face
Not

Detected

Multiple
Face

Detection

Position of
the Face

[135 88]
[262 71]
[123 86]

[137 83] [53 86]
[173 110]
[261 110]

Table 1 shows the detection and non detection of
faces. The face detection is done by means of Cascade
Haar Classifier. Continuous tracking of the face is
done with Cascade classifiers for detecting the real
time face detection. The result are obtained from
Figure 12, Figure 13 and Figure 14.From Image 1 the
face is detected and the tracking is observed from face
positions varying from [135 88], [262 71], [123
86].Even multiple face detection is also possible with
High Definition Video input.

CONCLUSION

Face detection and tracking is being challenging for
many researchers with real time Image sensor. With
the advancement the real time face detection in remote
monitoring is help for building much efficient
application. Moreover such technology can be useful
in tracking the lost object under dynamic environment.
Further enhancement of this work can be extended
with stereo depth analysis of face detection using two
image sensor interfaced with High speed Processor.

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a

boosted classifier of simple features,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,
2001, vol. 1, pp. 511–518.

[2] P. Viola and M. Jones. Robust Real-time Object Detection.
International Journal of Computer Vision,
57(2):137–154,2002. 2, 4

[3] Viola, P. and Jones, M. Rapid object detection using boosted
cascade of simple features. IEEE Conference on Computer
Vision and Pattern Recognition, 2001.

[4] M. Turk and A. Pentland, “Eigen faces for recognition,”
Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71– 86,
1991.

[5] K. Etemad and R. Chellappa, “Discriminant analysis for
recognition of human face images,” Journal of the Optical
Society of America A, vol. 14, no. 8, pp. 1724– 1733, 1997.

[6] B. Heisele, P. Ho, and T. Poggio, “Face recognition with
support vector machines: global versus component based
approach,” in Proceedings of IEEE International Conference
on Computer Vision, 2001, vol. 2, pp. 688– 694.

[7] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski, “Face
recognition by independent component analysis,” IEEE
Transactions on Neural Networks, vol. 13, no. 6, pp.
1450–1466, 2002.

[8] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: application to face recognition,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 12, pp. 2037– 2041, 2006.

[9] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma,
“Robust face recognition via sparse representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2, pp. 210–227, 2008.

[10] L. Ma, C. Wang, B. Xiao, and W. Zhou, “Sparse
representation for face recognition based on discriminative
low-rank dictionary learning,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
2012, pp. 2586–2593.

[11] R. Chellappa, J. Ni, and V.M. Patel, “Remote identification
of faces: Problems, prospects, and progress,” Pattern
Recognition Letters, vol. 33, no. 14, pp. 1849– 1859, 2012.

[12] P. Viola, “Rapid object detection using a boosted cascade
of simple features,” Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR'01), vol.1, pp.511-518, 2001.

[13] R. Lienhart, “An extended set of Haar-like features for
rapid object detection”, Proceedings of IEEE International
Conference on Image Processing(ICIP'02), vol.1,
pp.900-903, 2002.

[14] Open Computer Vision Library [Electronic resource], 2012,
Mode of access:
http://sourceforge.net/projects/opencvlibrary. – Date of
access: 25.06.2012.

[15] J .Owens, “GPU architecture overview,” International
Conference on Computer

[16] Graphics and Interactive Techniques
(SIGRAPH’07), 2007.

[17] Whitepaper NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110 [Electronic resource],
NVIDIA, 2012,
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler
-GK110-Architecture-Whitepaper.pdf.

[18] Daniel Hefenbrock, “Accelerating Viola-Jones face
detection to FPGA-level using GPUs,” Proceedings of the
2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, 2010,
pp.11-18.

Real Time Face Detection and Tracking Using Haar Classifier on SoC

Proceedings of SARC-IRF International Conference, 12th April-2014, New Delhi, India, ISBN: 978-93-84209-03-2

18

[19] Anton Obukhov, “Haar Classifiers for Object Detection with
CUDA”, GPU Computing Gems. Emerald Edition, 2011,
pp.517-544.

[20] Adam Herout, “Real-time object detection on CUDA,”
Journal of Real-Time Image Processing, vol.6, issue 3, 2011,
pp.159-170.

[21] J. U. Duncombe, “Infrared navigation—Part I: An
assessment of feasibility,” IEEE Trans. Electron Devices,
vol. ED-11, pp. 34-39, Jan. 1959.

[22] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller,
“Rotation, scale, and translation resilient public
watermarking for images,” IEEE Trans. Image Process., vol.
10, no. 5, pp. 767-782, May 2001.

